• Users Online: 454
  • Print this page
  • Email this page
Year : 2018  |  Volume : 6  |  Issue : 2  |  Page : 53-59

Experimental design approach for the formulation of controlled release buccal bilayer tablets of carvedilol

1 Department of Pharmaceutics, Bhagvan Mahavir College of Pharmacy, Surat, Gujarat, India
2 Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
3 Department of Formulation Development, Zhejiang Jingxin Pharma Pvt. Ltd., Zhejiang, China

Correspondence Address:
Vinodkumar D Ramani
Bhagvan Mahavir College of Pharmacy, BMEF Campus, VIP Road, Bharthana Vesu, Surat - 395 017, Gujarat
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/JIHS.JIHS_19_18

Rights and Permissions

Introduction: The absolute bioavailability of carvedilol is ~25% - 35% even though it rapidly and extensively absorbed following oral administration due to a significant degree of presystemic metabolism. The purpose of this study was to develop controlled release mucoadhesive buccal bilayer tablet of carvedilol using HPMC K4M and carbomer 934 as the mucoadhesive polymer. Method: The formulation optimization was performed using 32 full factorial design to study the effect of independent variables viz. HPMC K4M (X1), carbomer 934 (X2) levels on % drug release in 8 h (Y1), mucoadhesive time (Y2) in buccal cavity and mucoadhesive strength (Y3). The tablets were evaluated for its appearance, thickness, diameter, weight uniformity, content uniformity, surface pH, swelling index and in vitro drug permeation. Results: The optimized formulation evaluated for responses which showed an in vitro drug release of 81.3% in 8 h, mucoadhesive strength 11.2 g with mucoadhesive time of 471.32 min and demonstrated case-II transport mechanism. The results of response variables were found to be very close with the predicted values. These results support the fact that 32 full factorial designs with desirability function could be effectively used in optimization of controlled release mucoadhesive buccal bilayer tablets. Conclusion: It can be concluded that buccal route can be one of the alternatives available to bypass the extensive hepatic first-pass metabolism and to improve the bioavailability of carvedilol.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded234    
    Comments [Add]    
    Cited by others 1    

Recommend this journal